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I. INTRODUCTION

Missing data has been widely recognized as a key challenge
of clinical time series analysis, which hinders the practical
application of data-driven approaches to clinical data analyt-
ics [1], [2]. Various methods have been proposed to perform
the time series imputation to alleviate this issue, yet most
of them impose strong assumptions on the missing data, for
instance, locality in Gaussian Process based models [3], low-
rankness and temporal regularity in matrix/tensor factorization
models [4], etc. More recently, researchers proposed to apply
the Recurrent Neural Networks (RNNs) to tackle the missing
data imputation problem for time series, where the RNNs try
to capture and summarize the temporal dynamics using hidden
state vectors [5]-[7].

Despite the recent success, RNNs have also been found
likely to capture more the local properties rather than the
global dependencies [8] which could be potentially critical
for clinical time series imputation. For example, a patient with
kidney disease may exhibit different temporal patterns of blood
urea nitrogen (BUN) tests or blood pressure measurements
than normal patients. We conjecture that capturing the patient’s
overall condition from the observed time series and performing
imputation with reference to the captured condition would
significantly improve the imputation accuracy.

To achieve this, we propose the Context-Aware Time Series
Imputation (CATSI) framework, which is depicted in Fig. 1.
CATSI consists of two major ingredients: the context-aware
recurrent imputation and the cross-feature imputation. The
former is designed based on the bi-directional RNN to model
the longitudinal dynamics over time, and the latter utilizes the
cross-feature relationships of the observed variables. Finally,
we use a fusion layer to produce the final imputations based
on the recurrent and cross-feature imputations.

II. METHODOLOGY
A. Notations

We denote the multi-variable time series of a single patient
with missing data as X = {x;,Xa,...,X7}, where x; € RP
is the observation at time step ¢ with the corresponding time
stamp denoted as s;, and T' is the length of the time series.
Following the existing works [5], [6], we use a masking matrix
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Fig. 1. The framework of Context-Aware Time Series Imputation (CATSI).
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Fig. 2. The architecture of the context-aware recurrent component.

M to indicate the missingness, i.e., mf equals to one if the
dt" variable is observed at time step t, zero otherwise. We
introduce ¢ to represent the time gap between the current
observation and the preceding one, i.e.,
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B. Temporal Decay

We first transform the raw input X with missing values into
a “complete” version X by using a trainable temporal decay
module proposed in [5]. In particular, we calculate a temporal
decay factor -y, based on the observation gaps J; at time step
t. If ¢ is not observed, we complete it by decaying its last
observation x¢, towards the empirical mean . Formally,

v, = exp{— max(0, W,4, + b,)}, 2)
& =miz{ + (1 —mf) (vl + 1 =9HzY). 3

C. CATSI: Context-Aware Recurrent Imputation

We build the recurrent imputation component based on a
bi-directional RNN model. As shown in Fig. 2, the recurrent
imputation at time step t is generated based on the hidden
states of the forward and backward RNNs by:

_)
% = W[H,1; hroi + by, @

where [-; -] indicates the concatenation of the two hidden states.



TABLE I
INTERQUARTILE RANGE OF THE TRAINING DATA AND IMPUTATION ACCURACY BY NRMSD

PCL ___PK_PLCO2 PNA _ HCT __HGB MCV___PLT __ WBC RDW PBUN PCRE PGLU Mean

Imerr;?gaemle 100-108  3.7-44 2228 135-142 26.8-32.7 89-11 86-94 129-330 7-14.1 14.5-17.4 16-44 0.7-19 100-148  —
CATSI __ 0.1738 02431 02026 0.1958 0.1436 0.1349 02534 0.1862 02270 02130 0.1574 02060 02602 0.1998

3D-MICE 02000 02632 02314 02145 0.1505 0.1488 02713 02294 02560 02458 0.1846 02338 02769 0.2235

To explicitly take the patient conditions into account, we
propose to incorporate the “global context” of a given time
series into the RNN model. In particular, we learn a “context
vector” r from the given time series and at each time step,
we update the hidden state based on both the input and the
context vector. Formally, we have:

— — —

Ho=Wur+ by, €o=tanh(ho), (5)
%0 = Whr + (Eh, o= tanh(%o), (6)
N R N

h; 1, d4_1 =LSTM(X¢_1, h;_2, ¢4_2,r), @)

%Tfh Cr_t = LSTM (X141, intflv Croi1,r), (8

where LSTM(:) is the standard LSTM model.

It now remains to learn the context vector r from the time
series, and here we present two approaches of learning it.

a) Summarizing the Basic Statistics: We compute the
basic statistics for each variable, including the empirical mean
7%, the standard deviation o<, the missing rate pd, and the
length of the time series 7. We then compute r using a
function f that is approximated by a multi-layer perceptron
(MLP) to summarize the overall baseline characteristics of the
patient:

r=f(x0o,p7T). &)

b) RNN-based Encoder: We use another RNN model as
an encoder to capture the more complex temporal dynamics of
the time series. Briefly, we input the time series to the encoder
RNN and collect the hidden states at the last time step as the
context vector r, in that it summarizes the entire time series.
We use a standard GRU as the encoder RNN as it has a simpler
structure than LSTM.

The two approaches can be applied standalone, and we use
both of them together by concatenating the output of the two
methods as the context vector.

D. Cross-Feature Imputation

We also incorporate a cross-feature component to allow the
feature correlations being effectively utilized. Essentially, we
can estimate the value of one variable based on other variables
observed at the same time by:

2l =g(vi), vi=Wix +bf, (10)
where 2{ is the cross-feature imputation of the d** feature at
time step . The d*" column of W is forced to be zeros to
ensure that Z¢ is not involved. g(-) is a (non-linear) function
that is approximated by an MLP to fully explore the potentially

complex feature correlations.

E. Imputation Fusion

After obtaining the recurrent and the cross-feature imputa-
tions, we use a fusion layer similar to [6] to produce the final

imputation y, by taking their convex combination:

yi=08,02 +(1-8,) © %,
B, = sigmoid(Wg[y,; m¢] + bg).

(1)
(12)

F. End-to-end Training

We measure the estimation error by the mean squared
deviation (MSD) on the observed entries, i.e.,

LY) = [Mo (X -Y)|5/IM|?. (13)

To accelerate the convergence, we also accumulate the
estimation errors of the recurrent imputations X and the cross-
feature imputations Z, leading to the final loss function:

0= L(Y)+ LX) + L(Z). (14)

The CATSI model is trained end-to-end by stochastic
gradient-based optimization methods, and we normalize each
variable of the input data using the min-max normalization by

d x?

max(x?) — min(x4)"

— min(x?)

15)

III. EVALUATION AND RESULTS

We evaluate the performance of CATSI using the dataset
provided by the ICHI 2019 DACMI organizers, which is
derived from a publicly available real-world ICU dataset,
MIMIC-III [9]. The dataset contains 13 common laboratory
tests that are irregularly measured for 16,534 patients, half
of which (8,267 patients) was provided as training data and
the rest half was held out as test data. We summarize the
interquartile range of the 13 analytes in Table L.

We use 80% of the training data to train the model and use
the remaining 20% to determine the hyper-parameters. Then
we freeze the model to generate the imputation for the test
data. The performance is evaluated using nRMSD, which is
essentially taking root of the MSD between the imputation
and the ground truth that are both min-max normalized by
Eq. (15) on the missing entries. We report the final evaluation
results on the test set in Table I. The average nRMSD over all
variables obtained by CATSI is 0.1998, whereas that obtained
by 3D-MICE [2] is 0.2235. CATSI achieved 10.6% relative
boost against the baseline.

IV. CONCLUSION

We presented a novel CATSI framework for clinical time
series imputation, which utilizes the temporal dynamics with
the patient conditions explicitly considered by incorporating
a context vector in the RNN model. The feature correlations
are fully explored by integrating a cross-feature imputation
component. CATSI obtained 10.6% relative boost against the
state-of-the-art model, which validates its effectiveness.
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