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ABSTRACT

Clinical time series imputation is recognized as an essential task in clinical data analytics. Most
models rely either on strong assumptions regarding the underlying data-generation process or on
preservation of only local properties without effective consideration of global dependencies. To
advance the state of the art in clinical time series imputation, we participated in the 2019 ICHI Data
Analytics Challenge on Missing Data Imputation (DACMI). In this paper, we present our proposed
model: Context-Aware Time Series Imputation (CATSI), a novel framework based on a bidirectional
LSTM in which patients’ health states are explicitly captured by learning a “global context vector”
from the entire clinical time series. The imputations are then produced with reference to the global
context vector. We also incorporate a cross-feature imputation component to explore the complex
feature correlations. Empirical evaluations demonstrate that CATSI obtains a normalized root mean
square deviation (nRMSD) of 0.1998, which is 10.6% better than the state-of-the-art models. Further
experiments on consecutive missing datasets also illustrate the effectiveness of incorporating the
global context in the generation of accurate imputations.
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1 Introduction

The rapid development and global adoption of electronic health records (EHR) over the past decade has given re-
searchers valuable opportunities to perform secondary analysis of the EHR data accumulated over the years. In addi-
tion to the structured data, such as diagnosis codes and medication prescriptions, the EHR data also contain clinical
time series that are crucial for characterization of patients’ health conditions. In particular, bedside monitors and irreg-
ularly requested laboratory tests are often used to measure patients’ health status during their hospital stays. Therefore,
modeling the clinical time series has become a critical component of healthcare data analytics, and considerable effort
has been made to use clinical time series for various tasks like mortality prediction. However, the clinical time series
are generally of low quality, primarily due to the complexity of clinical practice, which hinders the application of data-
driven approaches [14, 10]. One major issue is missing data. Thus, it is often necessary to fill in missing values in an
incomplete clinical time series, which is referred to as “time series imputation”, before machine learning algorithms
can be applied.

However, clinical time series imputation is a nontrivial task for a variety of reasons. First, clinical time series are often
irregularly recorded in practice. Taking laboratory tests as an example, some tests, such as that to determine a blood
glucose level, are usually repeated at regular intervals, whereas others are only requested when necessary. Second, the
missingness of the clinical time series cannot always be regarded as completely at random because laboratory tests
could be unrequested when the caregivers do not find them necessary. In other words, the pattern of the missing clinical
time series could depend to some extent on the patients’ health states. Third, data are often missing consecutively rather
than individually at random. For instance, medical monitors can be disconnected for a time while the patient is being
transferred between wards. These circumstances impose additional difficulties and should be considered in attempts
to tackle the clinical time series imputation problem.

In view of these challenges, the IEEE ICHI Data Analytics Challenge on Missing data Imputation (DACMI)2 was
held in conjunction with the 7th IEEE International Conference on Health Care Informatics (ICHI-19). A shared task
was defined as imputing clinical time series with a dataset developed to benchmark the accuracy of submissions. This
paper describes our submission to the data analytics challenge.

Numerous methods based on statistics and machine learning have been exploited for time series imputation, including
the autoregressive-moving-average model (ARMA), matrix factorization (MF), and recurrent neural networks (RNN).
However, most methods make strong assumptions regarding the data-generation process that underlies the imputation.
For example, Gaussian process (GP) models [7] adopt the locality assumption, and MF models [17] assume temporal
regularity and low-rankness. The former means that data points closer in time tend to be similar, and the latter means
that data are generated at fixed time intervals and are governed by low-rank factors. Suboptimal performance may
result when these assumptions are not met. Recent efforts have also sought to develop time series imputation models
without such assumptions, such as the RNN, which summarizes past observations using hidden state vectors and
predicts the missing entries based on the learned hidden states [3, 2, 15]. Despite the great success obtained, it has
also been found that RNNs tend to capture local properties rather than the global dynamics of the input data [5],
which could have great importance for imputing the clinical time series, as mentioned above. For example, a patient
with kidney disease may exhibit different temporal patterns of blood urea nitrogen (BUN) tests or blood pressure
measurements from most patients.

These observations lead us to conjecture that the accuracy could be improved significantly if the patient’s overall health
state could be captured from the observed time series so that the imputation could be carried out with reference to the
captured health state. To this end, we propose the Context-Aware Time Series Imputation (CATSI) framework, which
is depicted in Fig. 1. CATSI consists of two major components: context-aware recurrent imputation and cross-feature
imputation. The former is designed based on a bidirectional RNN to model the longitudinal dynamics over time, and
the latter uses the cross-feature relationships of the observed variables. Finally, we use a fusion layer to produce the
final imputations based on the recurrent and cross-feature imputations.

2 Related Works

Many studies on time series imputation have been published, many of which use information on the longitudinal
observations of the same variable and the correlations among various variables observed at the same time, and different
assumptions are imposed.

Autoregressive models [11] such as ARMA and its variant ARIMA are simple but effective methods to model time
series. They usually assume the stationarity of the time series, which means that parameters such as the mean and

2http://www.ieee-ichi.org/2019/challenge.html
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Figure 1: The framework of Context-Aware Time Series Imputation (CATSI) model, consisting of two major compo-
nents: the context-aware recurrent component and the cross-feature component. The final imputation is produced by
fusing the recurrent imputations and the cross-feature imputations using a fusion layer.

variance of the variable of interest remain unchanged over time. Although non-stationarity can be partially eliminated
by differencing, complex temporal dynamics often cannot be accurately modeled, which can easily lead to inevitable
errors. In contrast, GP models [12, 13] allow different assumptions, such as smoothness, stationarity, and periodicity,
to be encoded by prior distributions. Under the Bayesian framework, GP is particularly beneficial in handling the
uncertainties in the observed data. However, it can be very sensitive to the prior, which is believed to govern the
parameters of the process that generates the underlying data. In the context of clinical time series, it could be quite
challenging to properly encode patients’ rapidly evolving health states as a prior distribution for the clinical time series.
Moreover, GP often uses an implicit constraint of locality, in the sense that data points closer in time generally are
closer in their values [10]. MF [16] and its higher-order extension, tensor factorization (TF) [4], can also be used to
analyze and impute time series. They assume that the observed data are generated by the linear combination of some
low-dimensional latent factors, that is, low-rankness, which is, however, often inadequate for clinical time series with
complex temporal dynamics. Multiple imputation by chained equations (MICE) [1] is another popular method used
for time series imputation. Unlike single imputation, it accounts for the uncertainty by generating multiple imputations
instead of only one. However, it assumes that data are missing completely at random, which could result in biased
imputations if applied to clinical time series.

RNNs have recently emerged as a promising tool for modeling sequential data and have been introduced to time series
imputation. They summarize past observations using a latent vector called a “hidden state” and generate a prediction
for the next time step given the current observation and the learned hidden state. In [3], the missing patterns were
found to be related to the labels of the data; thus a specific design of RNN model is proposed to exploit the missing
patterns in clinical time series to handle the missing information. [2] developed a model based on bidirectional Long
short-term memory (LSTM) to consider not only past observations but also the future trend of the time series.

In general, RNNs do not impose explicit assumptions on the data-generation process except for the temporal depen-
dency; that is, the future observations are conditioned on the past ones. Meanwhile, the temporal dynamics can be
captured purely by the hidden states learned by RNNs. In principle, RNNs can capture arbitrarily long-term dependen-
cies given sufficient capacity, yet they are often hindered by the difficulties encountered during optimization for model
learning. In practice, therefore, RNNs are observed to capture the local properties more than the global dynamics of
the input sequential data [5]. To the best of our knowledge, no study has yet explicitly considered the global dynamics
when applying RNNs to clinical time series imputation.

3 Dataset

The dataset used in this data analytics challenge is derived from the publicly available dataset generated in real-
world intensive care units ICU, MIMIC-III (Medical Information Mart for Intensive Care III) [8], by the organiz-
ers of the challenge. Thirteen commonly measured laboratory test analytes are extracted, including PCL(CI), PK,
PLCO2(Bicarb), PNA(Sodium), HCT, HGB, MCV, PLT, WBC, RDW, BUN, PCRE(Creatinine), and PGLU(Glucose).
Beginning with the raw data in MIMIC-III, the time points with half or more of the variables missing are excluded, and
only the ICU stays for which all variables have at least nine observations are included. The ground truth of the original
missing values in the data is unknown. Thus, additional missing data are manually injected by randomly masking one
observation per variable per patient so that the performance can be measured for the masked entries. Finally, the time
series recorded in the ICU stays for 16,534 patients are extracted; half (8267 patients) are provided as the training
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Table 1: Basic characteristics of the 13 analytes extracted, where RSD is the relative standard deviation of the empirical
mean. The empirical mean and the RSD of the training set and the test set are listed separately, and the interquartile
range and the missing rates are for the training set.

Analyte Mean RSD (%) Interquartile
Range

Missing Rate (%)
Training Test Training Test Native After Masking

PCL 103.62 103.75 6.14 6.19 100-108 1.18 5.32
PK 4.1 4.09 14.88 14.91 3.7-4.4 1.34 5.48

PLCO2 25.41 25.42 20.11 20.22 22-28 1.39 5.53
PNA 138.57 138.67 3.72 3.71 135-142 1.26 5.4
HCT 30.03 30.01 15.85 15.63 26.8-32.7 12.51 16.65
HGB 10.05 10.04 16.32 16.24 8.9-11 15.09 19.23
MCV 90.28 90.47 7.24 7.09 86-94 15.23 19.37
PLT 247.93 251.22 67.06 66.73 129-330 14.55 18.59

WBC 11.41 11.63 67.05 91.57 7-14.1 14.8 18.94
RDW 16.23 16.13 15.16 14.82 14.5-17.4 15.34 19.48
PBUN 33.52 32.87 76.37 76.51 16-44 0.74 4.88
PCRE 1.64 1.59 101.83 100 0.7-1.9 0.7 4.84
PGLU 132.38 131.81 48.25 48.3 100-148 2.7 6.84
Mean - - - - - 7.45 11.58

Table 2: Symbols and notations used throughout the paper.

Symbol Definition

� Element-wise matrix multiplication.
D The number of variables in the time series.

X ∈ RT×D The input matrix of the multivariate time series with missing values.
M ∈ RT×D The masking matrix indicating missingness in the input matrix.

δ t ∈ RD The observation gap at time step t.
γ t ∈ RD The temporal decay factor at time step t.

X̃ The precompleted input to the model.
W,b Learnable weighing matrix and the bias vector of linear transformations.
−→
h t ,
←−
h t The hidden states of the bidirectional LSTM.

−→c t ,
←−c t The cell states of the bidirectional LSTM.

r The context vector.
β t ∈ RD The coefficient for imputation fusion.
x̂t , ẑt ,yt The recurrent, cross-feature, and final imputation.

dataset, and the remaining half are held out as the test set. The basic characteristics of the 13 analytes are summarized
in Table 1.

4 Methodology

4.1 Notations

We use a matrix X ∈ RT×D to denote the multivariate time series for a specific patient, where T is the length of the
time series, D is the number of variables, and the tth row xt is the observation at the tth time step. The time stamp
corresponding to the tth time step is denoted by st . Like the existing work [3, 2], we use a masking matrix M of the
same size as the X to indicate missingness in the time series:

md
t =

{
1 if the dth variable is observed at time st

0 otherwise
. (1)

In addition, to account for the irregularity of the time series caused by the missing values, we introduce an observation
gap matrix ∆, the same size as X, to represent the gap between the current time stamp and the time stamp of the last
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observation that is not missing [3], i.e.,

δ
d
t =


st − st−1 +δ d

t−1 if t > 1,md
t−1 = 0

st − st−1 if t > 1,md
t−1 = 1

0 if t = 1
. (2)

The other notations and symbols used in this paper are summarized in Table 2.

4.2 Pre-processing: Normalization and Completion by Temporal Decay

We first normalize the raw input data for each variable of each patient using the min-max normalization by subtracting
the minimum and dividing by the range, that is, the difference between the maximum and minimum values, given as

xd =
xd−min(xd)

max(xd)−min(xd)
. (3)

To allow the raw input data with missing values to be properly fed into the model, we transform the raw input to a “pre-
completed” version X̃ by filling in the missing entries using a trainable temporal decay module originally proposed by
[3]. This method was inspired by the observation that if a variable has not been observed for a long time, it tends to be
closer to a “default” value (in our case, the empirical mean); otherwise, it would be likely to be closer to its historical
observations. Formally, a temporal decay factor γt ∈ RD is computed based on the observation gap δt at time st , and
the pre-completion can be computed by taking the convex combination of the last observation and the mean with the
decay factor as the coefficient, as follows:

γ t = exp{−max(0,Wγ δ t +bγ)}, (4)

x′dt = γ
d
t xd

t ′ +(1− γ
d
t )x̄

d , (5)

where x′dt is the computed pre-completion, xd
t ′ is the last observation, and x̄d is the empirical mean for the dth variable

at time st . We then complete the raw input by replacing the missing values using Eq. (5) while keeping the observed
ones. Formally,

x̃d
t = md

t xd
t +(1−md

t )x
′d
t . (6)

Note that the temporal decay module is trainable, which means that the parameters Wγ ∈ RD×D and bγ ∈ RD are
updated during training, and thus the pre-completions are recomputed in each iteration.

4.3 Context-Aware Recurrent Imputation

As shown in Fig. 1, our model consists of two major components. We first introduce the recurrent imputation compo-
nent, which is based on a bidirectional RNN model. We depict the architecture of the recurrent component in greater
detail in Fig. 2. The desired recurrent imputation lies in the middle of Fig. 2, below and above which are the forward
and backward RNNs, respectively. The time series are fed to the forward RNN in the original temporal order and to
the backward RNN in reverse order. By adopting the bidirectional RNN, we can use the information from both the past
and future observations in the time series. At the tth time step, the hidden states from the forward and backward RNNs
summarize the observations before and after st , and the recurrent imputation can then be produced by combining the
two hidden states and applying a linear transformation:

x̂t = Wx[
−→
h t−1;

←−
h T−t ]+bx, (7)

where h is the hidden state, and [·; ·] indicates the concatenation of the two hidden states. The parameters of the
forward RNN are denoted with a right arrow atop the letter (e.g.

−→
h ), and those of the backward RNN are denoted with

a left arrow (e.g.
←−
h ).

In this paper, we use the LSTM model [6] to extract the hidden states h from the input data. As described above,
consideration of the input alone is insufficient because it neglects the patients’ health states, which could be very
critical for clinical time series imputation. Therefore, we propose incorporation of patients’ health states when learning
the hidden states. Briefly, we introduce a “context vector” r ∈ RC for each patient that is learned to capture the global
temporal dynamics to represent the corresponding patient’s health state, where C is the dimension of the context vector,
which is a pre-specified hyperparameter. At each time step, we then produce the hidden states with reference to the
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Recurrent
Imputations

Time step t

x̃2 x̃3 x̃t+1 x̃T

←−h T −1
←−h T −2 · · · ←−h T −t · · · ←−h 1

←−h 0

x̂1 x̂2 · · · x̂t · · · x̂T −1 x̂T

−→h 0
−→h 1 · · · −→h t−1 · · · −→h T −2

−→h T −1

x̃1 x̃t−1 x̃T −2 x̃T −1

r r r r r

rrrrr
Backward

RNN

Forward
RNN

Figure 2: Architecture of the context-aware recurrent component based on a bidirectional LSTM. The vector r denotes
the global context vector learned from the entire time series input. At each time step, the global context vector, together
with the observations before and after, are used to learn the hidden states of the forward and backward RNNs. The
recurrent imputation is then obtained by combining the two hidden states learned.

global dynamics of the input time series by feeding the context vector to the LSTM model together with the time series
input. Formally, we have:

−→
h 0 =

−→
Whr+

−→
b h,

−→c 0 = tanh(
−→
h 0), (8)

←−
h 0 =

←−
Whr+

←−
b h,

←−c 0 = tanh(
←−
h 0), (9)

−→
h t−1,

−→c t−1 = LSTM([x̃t−1; r],
−→
h t−2,

−→c t−2), (10)
←−
h T−t ,

←−c T−t = LSTM([x̃t+1; r],
←−
h T−t−1,

←−c T−t−1), (11)

where h0 and c0 denote the initial hidden states and cell states in the LSTM model, respectively. LSTM(·) denotes
the update procedure of a standard LSTM model [6]. The initial hidden state of a standard LSTM model is generally
set to be a zero vector, whereas that of our method is computed from the global context vector, which is particularly
beneficial for imputing the missing values at the first several time steps.

To learn the context vector r from the time series for each patient, we here present two approaches:

Summarizing the Basic Statistics. The easiest way to characterize a patient’s overall health state is to compute the
basic descriptive statistics of the time series, i.e., the empirical mean x̄d , the standard deviation σd , the missing rate pd ,
and the length of the time series for the pth patient Tp. A multilayer perceptron (MLP) can then be used to approximate
the function f to summarize the patient’s overall baseline characteristics:

r = f (x̄,σ ,p,Tp) . (12)

This method is simple but effective because the empirical mean and the standard deviation can often provide valuable
information related to a patient’s state. For example, patients with uncontrolled hypertension usually have higher blood
pressure. However, this method does not account for the dynamics of the time series, and it can lead to situations in
which worsening patients cannot be distinguished from recovering patients, such as those whose blood pressure is
lowering over time after effectively being controlled.

RNN-based Encoder. To further capture the complex temporal dynamics of the time series, we can use another
RNN model as an encoder. Briefly, we input the entire time series into the encoder RNN and obtain the hidden states
at the last time step as the context vector r, in that it summarizes the entire time series. We use a standard gated
recurrent unit (GRU) as the encoder RNN because it has a simpler structure than LSTM.
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Although the two approaches can be applied separately, we combine them by concatenating the output of the two
methods as the context vector, with the expectation that the first part can represent the overall characteristics and the
second part can capture the patient’s characterizing dynamics.

The architecture of the recurrent component in CATSI differs from that developed in BRITS [2] in a number of ways.
The most significant difference is the use of the context vector c, which explicitly captures the patients’ global temporal
dynamics, thus alleviating the issue in which RNN models tend to focus more on local properties than on the global
dynamics [5].

4.4 Cross-Feature Imputation

Another major component is the cross-feature component, which allows the effective use of feature correlation. Es-
sentially, we can estimate the value of one variable based on other variables observed at the same time by:

vd
t = Wd

f x̃t +bd
f , (13)

ẑd
t = g(vd

t ), (14)

where ẑd
t is the cross-feature imputation of the dth feature at time step t. Eq. (13) first computes a linear transformation

of the raw input with the dth column of Wd
f being forced to be zeros. This ensures that x̃d

t is not involved in predicting
itself. We use another potentially nonlinear function g(·) that is approximated by an MLP to generate the cross-feature
imputations, which explores the complex feature correlations.

4.5 Imputation Fusion

After obtaining the recurrent and the cross-feature imputations, we use a fusion layer similar to that of [2] to produce
the final imputation yt by taking their convex combination:

yt = β t � ẑt +(1−β t)� x̂t , (15)

where the coefficient β t ∈ RD is computed by considering the missing patterns, i.e., the missing masks mt , and the
observation time gaps γ t by:

β t = sigmoid(Wβ [γ t ;mt ]+bβ ). (16)

4.6 Loss Function and End-to-end Training

We use the mean squared deviation (MSD) of the observed entries as the loss function as given by:

L (Y) =
‖M� (X−Y)‖2

F

‖M‖2
F

, (17)

where X is the input data, and Y is the produced imputation. M is the binary missing mask matrix, with 1 indicating
the observed entries; thus, the square of the Frobenius norm of M is essentially the number of observed data points in
the input data X.

As described in BRITS [2], optimizing the loss function of the final imputation alone leads to slow convergence. We
accumulate the loss functions for the recurrent imputations X̂ and the cross-feature imputations Z as in [2] to derive
the overall loss function to accelerate the convergence:

`= L (Y)+L (X̂)+L (Z)

=
‖M� (Y−X)‖2

F +‖M� (X̂−X)‖2
F +‖M� (Z−X)‖2

F

‖M‖2
F

. (18)

We train the CATSI model end-to-end with Adam [9], a widely-adopted optimization method based on stochastic
gradient descent. We set the learning rate to 0.001 throughout all experiments.

5 Experiments and Results

To evaluate the proposed model, we first perform imputation using the original dataset provided by the DACMI orga-
nizers, as introduced in Section 3. To demonstrate the effectiveness of the context-aware design, we further conduct
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Table 3: Experimental results for individual missingness, the original shared task in the ICHI19 data analytics chal-
lenge. The performance scores of the 3D-MICE model were provided by the challenge organizers. CATSI obtained
10.6% relative improvement over 3D-MICE and BRITS.

CATSI 3D-MICE BRITS MICE
PCL 0.1738 0.2 0.193 0.225
PK 0.2431 0.2632 0.266 0.29

PLCO2 0.2026 0.2314 0.224 0.268
PNA 0.1958 0.2145 0.215 0.233
HCT 0.1436 0.1505 0.153 0.148
HGB 0.1349 0.1488 0.146 0.146
MCV 0.2534 0.2713 0.279 0.309
PLT 0.1862 0.2294 0.215 0.318

WBC 0.227 0.256 0.26 0.309
RDW 0.213 0.2458 0.241 0.332
PBUN 0.1574 0.1846 0.194 0.29
PCRE 0.206 0.2338 0.244 0.29
PGLU 0.2602 0.2769 0.275 0.306
Mean 0.1998 0.2235 0.2235 0.266

Relative Improvement - 10.6% 10.6% 24.89%

experiments with consecutive missingness by randomly masking two to five consecutive entries in each variable to
generate new datasets.

In this paper, we measure the performance with the normalized root mean square deviation (nRMSD) defined as:

nRMSD(d) =

√√√√√√∑p,t(1−md
p,t)

(
|xd

p,t−yd
p,t |

max(yd
p)−min(yd

p)

)2

∑p,t(1−md
p,t)

, (19)

where p,d, and t indicate the indices of the patient, the analyte, and the time step, respectively, and y and x indicate
the ground truth and the imputations, respectively.

5.1 Individual Missingness

We first train CATSI with the official training set and perform imputation on the test set provided in the challenge, in
which only one entry per analyte per patient was manually masked as missing to evaluate the performance. We use
80% of the training data to train the model and the remaining 20% to determine the hyperparameters. After training
the model, we freeze the model to generate the imputation for the test set. This is the official task in the challenge, and
here we report the results we submitted for official evaluation. We compare with three baseline models, including:

• BRITS [2]: A state-of-the-art time series imputation model based on bidirectional RNN.
• 3D-MICE [10]: A state-of-the-art model developed to impute clinical time series by combining the MICE

method and the longitudinal GP model.
• MICE [1]: Multiple Imputation by Chained Equations, a widely adopted and easy-to-use method for imput-

ing time series mainly using the feature correlations of the data.

According to the results in Table 3, CATSI consistently outperforms all three baselines for all variables by a large
margin. It obtained an average nRMSD of 0.1998 over all analytes, which is 10.6% lower than that obtained with 3D-
MICE and BRITS. By using only the cross-variable correlations without considering any longitudinal information,
MICE can only achieve a mean nRMSD of 0.266, 24.89% higher than CATSI. Table 3 further shows that MICE has
similar performance on some analytes as BRITS, such as HGB, which means that the imputation for HGB is more sen-
sitive to other variables than to the historical observations. However, CATSI can still obtain better imputation on these
analytes, which indicates that the cross-feature imputation component can capture the complex correlations across
variables. For other analytes, BRITS achieved better imputation performance than MICE, which shows that longitu-
dinal information is critical for imputing the clinical time series. The further improvement obtained by CATSI also
demonstrates its effectiveness in representing patients’ health states by the global context vectors and incorporating
them into the imputation process.
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Table 4: Missing rates of the newly generated consecutive missing datasets, where m indicates the number of consec-
utive missing values.

Native Consecutive Missing
m=2 m=3 m=4 m=5

PCL 1.18% 9.46% 13.6% 17.74% 21.88%
PK 1.34% 9.62% 13.76% 17.9% 22.04%

PLCO2 1.39% 9.67% 13.81% 17.95% 22.09%
PNA 1.26% 9.54% 13.68% 17.82% 21.96%
HCT 12.51% 20.79% 24.93% 29.07% 33.21%
HGB 15.09% 23.37% 27.51% 31.65% 35.79%
MCV 15.23% 23.51% 27.65% 31.79% 35.93%
PLT 14.55% 22.83% 26.97% 31.11% 35.25%

WBC 14.8% 23.08% 27.22% 31.36% 35.5%
RDW 15.34% 23.62% 27.76% 31.9% 36.04%
PBUN 0.74% 9.02% 13.16% 17.3% 21.44%
PCRE 0.7% 8.98% 13.12% 17.26% 21.4%
PGLU 2.7% 10.98% 15.12% 19.26% 23.4%
Mean 7.45% 15.73% 19.87% 24.01% 28.15%

Table 5: Imputation performance for consecutive missingness, measured using the normalized root mean square devi-
ation (nRMSD).

m=2 m=3 m=4 m=5
CATSI BRITS CATSI BRITS CATSI BRITS CATSI BRITS

PCL 0.1998 0.228 0.2304 0.243 0.251 0.26 0.2682 0.273
PK 0.2494 0.289 0.2622 0.293 0.2678 0.299 0.2774 0.3

PLCO2 0.2264 0.268 0.2488 0.281 0.2682 0.292 0.2878 0.301
PNA 0.213 0.237 0.243 0.25 0.2588 0.262 0.2754 0.273
HCT 0.1462 0.165 0.176 0.2 0.1984 0.213 0.2202 0.232
HGB 0.1456 0.163 0.1788 0.198 0.1982 0.212 0.2202 0.238
MCV 0.2694 0.32 0.2838 0.325 0.2996 0.329 0.3098 0.334
PLT 0.2236 0.321 0.2578 0.331 0.2872 0.338 0.3098 0.344

WBC 0.25 0.313 0.2704 0.324 0.2922 0.327 0.3036 0.332
RDW 0.2404 0.328 0.2654 0.336 0.2952 0.342 0.3018 0.352
PBUN 0.2102 0.292 0.2484 0.302 0.2772 0.312 0.301 0.32
PCRE 0.2298 0.294 0.2506 0.296 0.2696 0.307 0.2876 0.31
PGLU 0.2654 0.315 0.272 0.314 0.2768 0.312 0.2834 0.316
Mean 0.221 0.272 0.245 0.284 0.265 0.293 0.28 0.302

Relative
Improvement - 18.75% - 13.73% - 9.56% - 7.28%

5.2 Consecutive Missingness

The individual missingness considered in the challenge can largely be regarded as missing-at-random, which is gen-
erally easier to handle. To demonstrate the effectiveness of introducing the global context vector to represent the
patients’ health states, we further consider the consecutive missingness. In particular, based on the ground truth data
(without manual masking), we generate new datasets by randomly masking m consecutive values for each variable per
patient. The newly generated datasets mimic the more realistic and challenging situations in which the global temporal
dynamics of the clinical time series must be considered for accurate imputations. We require that the masked entries do
not cover any native missing values, and vary m from two to five. We report the missing rates before and after masking
in Table 4, where the missing rates increase dramatically from an average of 11.58% for individual missingness, as
shown in Table 1 to 28.15% for five consecutive missing values.

For this task, we compare the other bidirectional RNN model, BRITS. BRITS has a similar architecture to CATSI,
except that CATSI incorporates a global context vector to represent the patient’s health state. Table 5 shows the im-
putation performance for various numbers of consecutive missing entries. CATSI outperforms BRITS for all numbers
of consecutive missing entries by a large margin. In particular, CATSI performs 18.75% better than BRITS when
two consecutive values are masked as missing, which is much higher than the performance gap of 10.6% obtained for
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Figure 3: Loss function for the recurrent component during training.

the individual missing experiments, as reported in Table 3. The reason for the huge increase in the performance gap
is that the use of local dynamics information is hindered by the consecutive missing entries. Consequently, accurate
imputation must rely more on longer-range temporal dynamics. CATSI effectively captures the global dynamics of
the input time series by the context vector, and the imputation is produced with reference to it. Without explicitly con-
sidering the global dynamics, it can be observed that BRITS relies more on local information, leading to suboptimal
performance.

In contrast, we also observe that as the number of consecutive missing entries continues to increase, the performance
gap between CATSI and BRITS decreases from 18.75% to 7.28%. This indicates that learning the context vector from
the input time series may not be sufficient to fully account for the complex dynamics of patients’ health states. Future
studies may incorporate other data modalities to further improve the imputation performance.

5.3 Ablation Study: Effect of the Recurrent and Cross-Feature Components

The proposed model, CATSI, contains two major components: the recurrent and the cross-feature components. In
this section, we conduct an ablation study to further understand the contribution of the two components to the overall
performance improvement.

In the objective function shown in Eq. (18), we accumulate the loss function for the recurrent imputation, the cross-
feature imputation, and the final imputation. We first examine the effects of this accumulated objective function.
We run two experiments, one with the accumulated loss function and the other with only the final imputation loss.
The change in the loss function of the recurrent component during training is visualized in Fig. 3. Fig. 3 shows that
accumulating the three terms in Eq. (18) leads not only to faster convergence, but also to lower loss value. In contrast,
when using the final imputation loss alone, the recurrent component converges much more slowly.

We then investigate the effects of the recurrent component and the cross-feature component on the final imputation
performance. We turn on one of the two components and run experiments using the individual missing dataset as in
Section 5.1. Note that with only one component being used, it is not necessary to fuse the imputation, so we remove
the final imputation loss and directly minimize the loss function of the active component in this experiment. The
results are reported in Table 6, where the values in bold indicate the best performance for the corresponding analyte,
and those in italics indicate the second best. As we observed previously, the two components contribute differently
to different analytes. For most analytes, such as PLT, RDW, and PCRE, the results of the recurrent component are
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Table 6: Experimental results of the imputation performance using CATSI and the two components separately. Ex-
periments are done with the individual missing dataset as in Section 5.1. The numbers in bold indicate the best
performance for the corresponding analyte, and those in italics indicate the second-best ones. The performance is
measured using normalized Root Mean Square Deviation (nRMSD).

PCL PK PLCO2 PNA HCT HGB MCV
Recurrent component 0.192 0.238 0.205 0.213 0.212 0.203 0.243

Cross-feature component 0.204 0.267 0.249 0.212 0.110 0.107 0.287
Fusion of both components 0.174 0.243 0.203 0.196 0.144 0.135 0.253

PLT WBC RDW PBUN PCRE PGLU Mean
Recurrent component 0.179 0.221 0.213 0.152 0.201 0.250 0.209

Cross-feature component 0.295 0.291 0.317 0.271 0.269 0.282 0.243
Fusion of both components 0.187 0.227 0.213 0.157 0.206 0.260 0.200

significantly better than those of the cross-feature components and even better than those in the final imputation.
However, for other variables such as HCT and HGB, the recurrent component performs much worse than the cross-
feature component. However, the final imputation obtained by fusing the two components is closer than that obtained
by the cross-feature component. In fact, for all analytes, the final imputation obtained by fusing the two components
shows either the best or the second-best performance, and CATSI obtains the overall best performance, measured by
the mean nRMSD. This also suggests that future studies can make use of the differences in terms of the sensitivity to
the recurrent information and the feature correlation information to generate better final imputations.

6 Conclusions

In this paper, we propose the Context-Aware Time Series Imputation (CATSI) framework for imputation of clinical
time series; its advantage is that the patients’ health states are explicitly considered by introducing a global context
vector learned from the input clinical time series data. CATSI consists of two major components: a context-aware
recurrent imputation module based on bidirectional LSTM and a cross-feature imputation module to explore the com-
plex feature correlations. An imputation fusion layer is used to produce the final imputation. The empirical evaluations
on both the original shared task in the ICHI-19 data analytics challenge and the consecutive missingness configuration
show that CATSI consistently outperforms all baselines. Moreover, the relative performance gap between CATSI and
BRITS increases from 10.6% for individual missing values to 18.75% for two consecutive missing values, thus val-
idating the effectiveness of introduction of the global context vector as a representation of patients’ health states. In
future work, we will focus on integrating other data modalities, such as event sequences in EHR, to further capture the
complex dynamics of patients’ health states and further improve the imputation performance.
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