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Abstract
Non-negative tensor factorization has been shown
effective for discovering phenotypes from the EHR
data with minimal human supervision. In most
cases, an interaction tensor of the elements in the
EHR (e.g., diagnoses and medications) has to be
first established before the factorization can be ap-
plied. Such correspondence information however
is often missing. While different heuristics can
be used to estimate the missing correspondence,
any errors introduced will in turn cause inaccu-
racy for the subsequent phenotype discovery task.
This is especially true for patients with multiple
diseases diagnosed (e.g., under critical care). To
alleviate this limitation, we propose the hidden
interaction tensor factorization (HITF) where the
diagnosis-medication correspondence and the un-
derlying phenotypes are inferred simultaneously.
We formulate it under a Poisson non-negative ten-
sor factorization framework and learn the HITF
model via maximum likelihood estimation. For
performance evaluation, we applied HITF to the
MIMIC III dataset. Our empirical results show that
both the phenotypes and the correspondence in-
ferred are clinically meaningful. In addition, the in-
ferred HITF model outperforms a number of state-
of-the-art methods for mortality prediction.

1 Introduction
Electronic health records (EHR) contain rich clinical data
about patients, including diagnoses, prescription orders, lab-
oratory test results, etc. Strategic use of them can acceler-
ate clinical research, and improve healthcare quality [Jensen
et al., 2012]. However, the raw data of EHR have a lot of
missing information, and are frequently inaccurate, highly
complex, and possibly biased [Hripcsak and Albers, 2013].
This hinders the reliability of taking the data-driven paradigm
for clinical research. Therefore, the raw EHR data are of-
ten mapped to some clinically meaningful and interpretable
concepts, which are typically referred to as phenotypes. Tra-
ditional approaches for phenotyping are based on supervised

learning, in which the medical experts specify some target
diseases, assign the class label for patient samples, and man-
ually define the features [Lasko et al., 2013]. This approach
is known to be time-consuming and labor-intensive [Hripc-
sak and Albers, 2013]. Various machine learning methods
have been proposed to automatically discover multiple phe-
notypes from the EHR data with minimal human supervi-
sion [Yu et al., 2015; Ravı̀ et al., 2017; Wang et al., 2015;
Kim et al., 2017]. Among them, non-negative tensor fac-
torization (NTF) has been shown to be effective, especially
for the structured EHR data, with the capability of preserv-
ing and modeling the interaction structures, which typically
cannot be achieved by non-NTF based methods, such as ma-
trix decomposition [Ho et al., 2014b; Wang et al., 2015;
Yang et al., 2017; Kim et al., 2017]. For instance, the
patient-diagnoses-medication interaction can be modeled us-
ing a third-order tensor X where the entry xijk = c denotes
that medication k is prescribed c times to patient i in response
to diagnosis j. Interpretable latent patterns as representations
of the underlying phenotypes can be automatically discovered
via non-negative tensor factorization.

To apply tensor factorization, we need to first define the
tensor based on the interaction information which, however,
is often not available in the EHR data. It is typical that only
a list of diagnoses and a list of medications are recorded per
clinical visit, with their correspondence totally missing. Ex-
isting methods take the “equal-correspondence” strategy and
construct the tensor by assuming all those diagnoses and med-
ications per visit to be equally corresponding to each other.
Some assume the diagnosis-medication correspondence to be
binary while some assign the recorded counts of the med-
ications to all the recorded diagnoses. Fig. 1(a) illustrates
the correspondence based on such assumption, where Meto-
prolol is assumed to correspond equally to both hypertension
and pneumonitis since they co-occurred in the records. How-
ever, it is known that Metoprolol is typically used to treat
hypertension but not pneumonitis in clinical practice. HITF,
as depicted in Fig. 1(b), can correctly infer that Metoprolol
is corresponding to hypertension only, which is consistent
with the medical knowledge and practice. It shows that the
“equal-correspondence” strategy will inevitably cause errors.
For datasets like MIMIC-III which is a critcal care database,
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Figure 1: Illustration of diagnosis-medication correspondence: Each
row denotes a disease (DX1/DX2/DX3) and the “1/0” value next
to it indicates if the disease is diagnosed or not. Each column de-
notes a medication (RX1/RX2/RX3) and the number underneath
each medication denotes the amount of prescribed medications. (a)
Adopting equal-correspondence strategy. (b) Correspondence in-
ferred by the proposed HITF model, which is more reasonable.

multiple diagnoses and medications are often recorded per
clinical visit. The resulting inaccuracy will become signifi-
cantly high.

In this paper, we propose a novel tensor factoriza-
tion method called Hidden Interaction Tensor Factorization
(HITF) where the aforementioned correspondence informa-
tion is estimated together with the tensor factorization. In
particular, given only a patient-by-diagnosis binary matrix
D′ and a patient-by-medication counting value matrix M, we
take the Poisson CP tensor factorization of the hidden interac-
tion tensor representing the patient-diagnosis-medication in-
teraction to discover the underlying phenotypes. We evalu-
ate HITF on the MIMIC-III dataset [Johnson et al., 2016].
The empirical results obtained show that the proposed HITF
model can achieve better performance, both quantitatively
and qualitatively when compared with the state-of-the-art
non-negative tensor factorization based phenotyping models.
To the best of our knowledge, this is the first model using
tensor factorization with all the unobserved entries of the in-
teraction tensor inferred from the EHR data.

2 Related Work
Applying tensor factorization to the healthcare domain has
been intensively studied in the past decade for applications
like computational phenotyping [Luo et al., 2016]. In [Ho et
al., 2014a], a non-negative tensor factorization method was
applied to discover multiple phenotypes from the EHR data.
This method was then extended by adding a bias component
to capture the baseline characteristics among the overall pop-
ulation [Ho et al., 2014b], and by imposing domain (medi-
cal) knowledge into a guidance matrix [Wang et al., 2015].
More recently, some information existing in the EHR data
set like in-hospital mortality or medical cost was leveraged to
make the phenotypes more discriminative [Yang et al., 2017].
Also, some clustering structure can be added to further en-
sure the discovered phenotypes being more distinct from each
other [Kim et al., 2017].

Regarding the aforementioned missing data problem, it is
in fact common for the input tensor data to be partially miss-
ing, triggering a large volume of studies on tensor completion
via tensor factorization [Liu et al., 2014]. Some recent study

also considered the situation that partial indices of the ten-
sor are missing [Yamaguchi and Hayashi, 2017], and yet the
existence of at least part of the tensor entries, i.e., interac-
tions being observed, are typically assumed. Different from
the existing tensor completion and index inference methods,
we propose to jointly infer the interaction together with the
latent factors. The work most similar to ours is [Gunasekar et
al., 2016], which performs non-negative matrix factorization
over several matrices with one shared dimension. Instead of
decomposing the matrices separately, we model the interac-
tions by a hidden interaction tensor explicitly and make use
of the information across all the dimensions.

3 Notations and Preliminaries
In this paper, we denote the interaction tensor and the recon-
structed tensor by X and X̂ , and the (i, j, k)-th entry by xijk
and x̂ijk respectively. The factor matrix associated with the
n-th dimension is denoted by U(n), with its r-th column vec-
tor by u

(n)
r and its (i, j)-th entry by u(n)ij respectively. The

observed matrices, i.e., patient-by-medication matrix and bi-
narized patient-by-diagnosis matrix are denoted by M and
D′ respectively. The number of patients, diagnoses and med-
ications are Np, Nd and Nm respectively.

CP Decomposition. The CP decomposition [Kolda and
Bader, 2009] approximates the input tensor with the sum of
component rank-one tensors, where each of which can be in-
terpreted as one latent factor. For example the CP decompo-
sition of a third-order tensor X is defined as follows:

X ≈
R∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r = JU(1),U(2),U(3)K, (1)

where R is the number of rank-one tensors.

Slices. Two-dimensional slices are sections of a tensor and
are obtained by fixing all but two indices. For a third-order
tensor X , together with its CP decomposition defined as
aforementioned, the slice with the index of the second dimen-
sion fixed at j can be written as [Kolda and Bader, 2009]:

X:j: = U(1) diag(u
(2)
j: )U

(3)T , (2)

where diag(·) is the diagonal operator that takes a vector as
input and gives a diagonal matrix with the elements of the
input vector on the main diagonal as output.

Accumulation. We define the accumulation of a tensor as a
matrix obtained by summing all slices of the tensor along the
same dimensions. For a third-order tensor X , the accumula-
tion along the second dimension is:

M =

J∑
j=1

X:j: = U(1) diag(1TU(2))U(3)T , (3)

where 1 is the vector of all ones.

4 Proposed Model
4.1 Formulation
Given a patient-by-medication matrix M and a binary
patient-by-diagnosis matrix D′, our goal is to jointly infer the
diagnosis-medication interactions and the latent phenotypes.
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Figure 2: Framework of the proposed model: Only the accumula-
tion along medication mode and diagnoses mode are observed. The
hidden interaction tensor are assumed to be drawn from a Poisson
distribution where the mean is reconstructed from the tensor factors.

We formulate the problem as a Poisson non-negative ten-
sor factorization (Poisson NTF) problem, where the interac-
tions among patients, diagnoses and medications are explic-
itly modeled with a hidden patient-diagnosis-medication ten-
sor X , with the (i, j, k)-th entry xijk denoting the amount
of medication k being prescribed to patient i in response to
the diagnosis j. The framework of our proposed model is
illustrated in Fig. 2. In Poisson non-negative tensor factor-
ization, the entries of the input tensor X are assumed to be
drawn from a Poisson distribution, where the mean is the re-
constructed tensor X̂ [Chi and Kolda, 2012], i.e.,

xijk ∼ Poisson(x̂ijk). (4)

The standard Poisson NTF model solves for the CP fac-
tor matrices by maximizing the likelihood of the input tensor.
However, in our case, the tensor describing the interactions is
actually not observed. Instead, we observe the accumulation
of the hidden interaction tensor, e.g. patient-by-medication
matrix M, where each entrymik = c denotes that medication
k is prescribed c times to patient i (without knowing which di-
agnosis it corresponds to). Note that the sum of independent
Poisson distributions yields another Poisson distribution with
the mean being the sum of the parameters of the composing
Poisson distributions, which gives:

mik =

Nd∑
j=1

xijk ∼ Poisson(

Nd∑
j=1

x̂ijk). (5)

Together with the accumulation operation defined in Eq.
(3), we can rewrite Eq. (5) in matrix form:

M ∼ Poisson(U(1) diag(1TU(2))U(3)T ). (6)

Likewise, for the patient-by-diagnosis matrix D we have:

D ∼ Poisson(U(1) diag(1TU(3))U(2)T ). (7)

However, for diagnoses we do not even observe the accumu-
lation, but instead a binarized matrix D′ with its entry d′ij
being one if the patient i has the diagnosis j, zero otherwise.
Therefore, the elements in matrix D′ follow a Bernoulli dis-
tribution where the probability of patient i having diagnosis
k is given by:

Pr(d′ij = 1) = Pr(dij > 0) = 1− Pr(dij = 0)

= 1−
Nm∏
k=1

e−x̂ijk
x̂0ijk
0!

= 1− exp

(
−

R∑
r=1

u
(1)
ir

(
Nm∑
k=1

u
(3)
kr

)
u
(2)
jr

)
.

(8)

Reorganizing Eq. (8) into a more compact form, we obtain:

D′ ∼ Ber
(
1− exp

(
−U(1) diag(1TU(3))U(2)T

))
. (9)

4.2 Maximum Likelihood Estimation
The variables to be inferred are the CP factor matrices U(1),
U(2) and U(3). We derive the joint log-likelihood of obser-
vation M and D′ and infer the variables by maximizing the
joint log-likelihood:

L = L(M) + L(D′) (10)

=
∑
i,k

log
(
p
(
mik|U(n)

))
+
∑
i,j

log
(
p
(
d′ij |U(n)

))
,

where the log likelihood of the patient-by-medication matrix
M is given by:

L(M) =
∑
i,k

log
(
p
(
mik|U(n)

))
(11)

=
∑
i,k

−(
Nd∑
j=1

x̂ijk) +mik log(

Nd∑
j=1

x̂ijk)

+ constant

=1T (−U(1) diag(1TU(2))U(3)T

+M ∗ log(U(1) diag(1TU(2))U(3)T ))1+ constant,

where ∗ denotes the element-wise multiplication. The log
likelihood of the patient-by-diagnoses matrix D′ is given by:

L(D′) =
∑
i,j

log
(
p
(
d′ij |U(n)

))
(12)

=
∑
i,j

(
d′ij log(exp(

Nm∑
k=1

x̂ijk)− 1)−
Nm∑
k=1

x̂ijk

)

=1T (D′ ∗ log(exp(U(1) diag(1TU(3))U(2)T )−E)

−U(1) diag(1TU(3))U(2)T )1.

4.3 Learning Algorithms
We estimate the variables by minimizing the negative log
likelihood with non-negativity constraints. The optimization
problem is formulated as follows:

argmin
U(1),U(2),U(3)

f(U(1),U(2),U(3)) ≡ −L(M)− L(D′)

subject to U(n) ≥ 0, n = 1, 2, 3. (13)

We solve the optimization problem via the block coordi-
nate descent method [Xu and Yin, 2013]. The procedure is
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summarized in Algorithm 1. For each inner iteration, we fix
all but one factor matrix to be updated by solving the sub-
problem. E.g., for the patient dimension, we have:

U
(1)
k+1 = argmin

X≥0
f(X,U

(2)
k ,U

(3)
k ), (14)

where the subscript k denotes the k-th iteration.
We apply the projected line search to solve the subproblem

with the procedure presented in Algorithm 2. After finding
the search direction Sk, we apply the projected backtrack-
ing line search satisfying the Armijo condition [Nocedal and
Wright, 2006] to ensure that the objective function decreases
sufficiently in each inner iteration. Given the non-negative
parameters descent step ρ (0 < ρ < 1) and sufficient descent
σ (0 < σ < 1), we find the smallest non-negative integer t
such that:

f
(
P+[Xk + ρtSk]

)
− f (Xk)

≤σ
(
(P+[Xk + ρtSk]−Xk) ·∇f (Xk)

) (15)

where P+[·] denotes the projection operator that projects the
variable onto the feasible region, and (A·B) is the inner prod-
uct of matrices A and B. The next iteration is then given by
Xk+1 ← P+[Xk + ρtSk]. In this paper, the search direction
is taken to be the negative gradient of the objective function,
i.e., Sk = −∇f(Xk). We set σ = 10−4 and ρ = 0.5 in the
experiments.

Algorithm 1: Block Coordinate Descent Optimiza-
tion Framework for HITF Model

Input : patient-by-medication matrix: M,
patient-by-diagnoses matrix: D′

Output: CP factor matrices: U(1), U(2) and U(3)

1 initialize U(n)(n = 1, 2, 3) randomly;
2 repeat
3 for n = 1 : 3 do
4 repeat
5 update U(n) with other variables fixed using

projected line search in Algorithm 2;
6 until subproblem converges;
7 end
8 until all subproblems converge;

Algorithm 2: Projected Line Search for Solving Sub-
problems with Armijo Condition

Input : Variable Xk, search direction Sk,
sufficient descent σ and descent step ρ.

Output: Updated variable Xk+1

1 t← 0 ;
2 while not f

(
P+[Xk + ρtSk]

)
− f (Xk) ≤

σ
(
(P+[Xk + ρtSk]−Xk) ·∇f (Xk)

)
do

3 t← t+ 1 ;
4 end
5 update variable: Xk+1 ← P+[Xk + ρtSk];

Several studies have shown that zeroing out components
too early is not beneficial [Ho et al., 2014b; Chi and Kolda,
2012]. Thus, for practical consideration, we project the neg-
ative components to a strictly positive region [ε,+∞) instead
of the non-negative orthant. After convergence, we normalize

the factor matrices and zeroing out the entries smaller than a
threshold ε′. In this paper, we fix ε = ε′ = 10−5. Since ε′ is
chosen to be a very small positive number, omitting elements
smaller than ε′ after normalization has a very limited impact
on the objective value but significantly improves the sparsity
and distinction of the inferred factors.
4.4 Generalization to Higher-Order Cases
It is straightforward to generalize the proposed HITF
model to the higher order cases, where N matrices
{V(1), . . . ,V(N)} that share one dimension are given. In
the higher order setting, the order of the hidden inter-
action tensor is N + 1, and the CP factor matrices are
{U(s),U(1), . . . ,U(N)}, where U(s) is the factor matrix for
the shared dimension. Then the accumulation operation for
the n-th dimension defined in Eq. (3) can be generalized into
the following form:

V̂(n) = U(s)
∏
k 6=n

diag
(
1TU(k)

)
U(n)T . (16)

The log likelihood, gradient and the learning algorithm can
be derived following the same strategy as described above.

The possibility of generalizing to higher-order cases en-
ables the HITF model to consider the correspondence among
patients, diagnoses, medications, lab tests and even vital
signs, as the interaction of these dimensions can be of clinical
importance. Another interesting observation is that the gen-
eralized formulation is similar to that proposed for Collec-
tive Matrix Factorization (CMF) [Singh and Gordon, 2008;
Gunasekar et al., 2016]. However, they differ in several as-
pects. First, CMF does not model the interaction among dif-
ferent dimensions, while we model the interaction explicitly.
Second, in the CMF model, the reconstruction of each input
matrix depends on only the shared factor matrix and the fac-
tor matrix associated with the corresponding dimension, i.e.,
V̂(n) = U(s)U(n)T . For HITF, all factor matrices contribute
to the recovery of each input matrix, as shown in Eq. (16).
Third, in [Gunasekar et al., 2016], only the count matrices
are considered but we consider the patient-by-diagnoses ma-
trix D′ being binary, which is more practical.

5 Experiments
We conduct experiments on a critical care dataset (MIMIC-
III), and evaluate the quality of inferred diagnosis-medication
correspondence and phenotypes. We also evaluate the accu-
racy of mortality prediction using the inferred phenotypes.
Data Set. MIMIC-III [Johnson et al., 2016] is an open-
source, large-scale, de-identified and ICU patients related
EHR data set. In the MIMIC-III dataset, the patients have 11
diagnoses per visit on average. Moreover, it contains consid-
erably many medications which are used not for treating spe-
cific diseases, such as pain relievers, making the diagnosis-
medication correspondence more obscure.
Data Preprocessing. Similar to [Kim et al., 2017], we ex-
tract a subset of the MIMIC-III dataset containing 7, 652 adult
patients with 50% died in hospital, and only use the first ad-
mission of each patient. We exclude the base type drugs such
as D5W and use only the medications that appeared in at
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Cardiac dysrhythmias(39.0%) Diabetes mellitus(25.3%) Asthma(5.5%)
HITF Rubik HITF Rubik HITF Rubik

Furosemide(0.08) Potassium
Chloride(0.08) Insulin(0.64) Insulin(0.09) Albuterol 0.083%

Neb Soln(0.46)
Potassium

Chloride(0.08)
Potassium

Chloride(0.07) Insulin(0.06) Insulin Human
Regular(0.05)

Potassium
Chloride(0.07)

Ipratropium
Bromide Neb(0.39) Insulin(0.06)

Metoprolol(0.06) Furosemide(0.06) Aspirin(0.05) Furosemide(0.06) Furosemide(0.08) Furosemide(0.05)
Amiodarone
HCl(0.05)

Magnesium
Sulfate(0.04) Furosemide(0.03) Magnesium

Sulfate(0.03) Heparin(0.06) Magnesium
Sulfate(0.04)

Heparin
Sodium(0.04) Acetaminophen(0.03) Atorvastatin(0.03) Acetaminophen(0.03) Acetaminophen(0.03)

Table 1: Top Five Corresponding Medications for Three Diagnoses Inferred by HITF and Rubik.

least 5% of the patients, resulting in 128 distinct ones. Di-
agnoses are grouped by the first three digits of their ICD-9
codes, and we use the diagnoses that appeared in at least 1%
of the patients, which gives 184 distinct diagnoses.

Baselines. We use Rubik [Wang et al., 2015], CP-APR [Chi
and Kolda, 2012] and SiCNMF [Gunasekar et al., 2016] as
the baselines. Rubik is one of the state-of-the-art NTF-based
computational phenotyping models, CP-APR is a widely used
Poisson non-negative tensor factorization model and SiC-
NMF is based on collective matrix factorization. For Rubik
and CP-APR, we adopt the two commonly used strategies to
establish the interaction tensor. The first one is binary, which
sets the entries of the tensor to one if the diagnosis and med-
ication co-occur, or zero otherwise. The second one sets the
tensor entries to the number of co-occurrence of medications
and diagnoses.

5.1 Diagnosis-Medication Correspondence
We first evaluate the quality of the inferred correspondence.
The number of phenotypes is set to 50 in this experiment.

Correspondence Inferred. To obtain the diagnosis-
medication correspondence matrix of an individual patient
with index i, we fix the patient index of the hidden interaction
tensor at i. Since it is unrealistic to visually examine the
results for all individual patients, we focus on the aver-
age correspondence over some crowds of patients. More
specifically, we first select a diagnosis with index j, then
extract all the patients with the selected diagnosis as the base
population, and accumulate the inferred interaction tensor
along patient dimension over the base population to get an
average correspondence matrix. Note that in the resulting
correspondence matrix, each row represents one diagnosis
and each column represents a medication. We extract the j-th
row and normalize it using `1 norm. The normalized value in
the extracted row ci can be interpreted as the probability that
the medication i is used for treating the selected diagnosis,
and we define it as the correspondence score.
Results. Due to space limitation, we select only three di-
agnoses and show the top five corresponding medications in-
ferred by HITF and Rubik in Table 1. Cardiac dysrhythmias
and diabetes mellitus are two common diagnoses found in the
data, with 39% and 25.3% patients respectively. Asthma is a
less frequent diagnosis with only 5.5% patients. The num-
ber following each medication is the correspondence score.

Diagnoses Medications

Diabetes mellitus Insulin
Other diseases of lung Insulin Human Regular
Acute kidney failure

Essential hypertension
...

Cardiac dysrhythmias Amiodarone HCl
Heart failure Metoprolol

Other diseases of lung Furosemide
...

Other diseases of lung Albuterol
Cardiac dysrhythmias Diltiazem

Heart failure Ipratropium Bromide MDI
Chronic airway obstruction, Fluticasone Propionate

not elsewhere classified ...

Table 2: Three Examples of Inferred Phenotypes.

Table 1 suggests that Rubik fails to produce reasonable cor-
respondence. The top corresponding medications for all the
diagnoses given by Rubik are all very similar and in fact are
the dominating medications in the dataset. Moreover, the cor-
respondence score given by Rubik is not discriminative for
all medications. Rubik essentially assigns most of the ex-
isting medications to every diagnosis almost evenly. On the
other hand, the correspondence inferred by HITF is more rea-
sonable. E.g., the corresponding score of insulin to diabetes
inferred by HITF is 0.64, which is significantly higher than
other medications. Furthermore, HITF is robust for less fre-
quent diagnoses. Take asthma as an example. The first two
corresponding medications inferred by HITF already give the
overall correspondence score of 0.87, and both medications
are in fact used to treat asthma in clinical practice.

Discussion. The reason for the performance improvement
is that the interaction tensor in Rubik is established using the
equal-correspondence strategy, and the objective function of
Rubik is minimizing the reconstruction error, which makes
the resulting CP factors to recover the ill-established corre-
spondence as much as possible. In contrast, HITF only max-
imizes the likelihood of the observed patient-by-medication
matrix and patient-by-diagnosis matrix. Under the CP factor-
ization framework, the low-rank mechanism behind the ten-
sor factorization leads to the discovery of more realistic and
reasonable diagnosis-medication correspondence patterns.
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Figure 3: Performance comparison - sparsity and similarity.

5.2 Phenotypes
The clinical interpretability and meaningfulness of the de-
rived phenotypes are important for computational phenotyp-
ing algorithms. Therefore, we first qualitatively evaluate the
quality of the phenotypes derived by HITF with the number of
phenotypes being set to 50. Then we increase the number of
phenotypes and quantitatively measure the sparsity and sim-
ilarity of the phenotypes, which are two important properties
to achieve interpretability.

Qualitative Evaluation. Table 2 shows three examples of
the phenotypes derived by HITF, which correspond to differ-
ent patient conditions in ICU. The first one is related to pa-
tients suffering from diabetes, the second one is more related
to patients having cardiac diseases, and the third one repre-
sents the patients with respiratory diseases. Note that “Other
diseases of lung” is a class name in ICD-9 coding system,
and most of the patients with this diagnosis is actually hav-
ing acute respiratory failure, which frequently appears in ICU
and can relate to many end-stage diseases.

Sparsity and Similarity. We measure the sparsity by the
ratio of zero elements and the similarity by the average cosine
similarity score defined as [Kim et al., 2017]:

Similarity Score

=

∑R
r1

∑R
r2>r1

{
cos(U

(2)
:r1 ,U

(2)
:r2) + cos(U

(3)
:r1 ,U

(3)
:r2)
}

R(R− 1)
.

(17)

where U(2),U(3) are the factor matrices associated with the
diagnosis and medication dimensions respectively. We in-
crease the number of factors from 20 to 300, and plot the spar-
sity and similarity scores against the number of phenotypes in
Fig. 3. We see that HITF can derive significantly sparser re-
sults compared with Rubik, especially when the number of
factors is large. When the number of phenotypes is set to
300, HITF derived phenotypes contain 8.5 diagnoses and 5.9
medications on average. On the other hand, when the num-
ber of phenotypes is less than 75, the phenotypes derived by
HITF is less distinct than Rubik. This is because Rubik has a
pairwise constraint in its objective function to ensure orthog-
onality in the factor matrices while HITF does not have any
additive constraints on the factor matrices.

Figure 4: Prediction accuracy given different numbers of pheno-
types.

Figure 5: Prediction accuracy given different training sets.

5.3 Mortality Prediction
To examine the effectiveness of representing patients using
the phenotypes derived using HITF, we apply them for in-
hospital mortality prediction. We first split the data into train-
ing set and test set with a proportion of 8 : 2. In the factor-
ization step, we do not use any label information. And after
the latent factors being inferred, we keep the factor matrices
associated with diagnosis and medication dimensions fixed
and project the test set onto the learned factors to obtain the
patient representation of the test set. Then, we use a lasso
regularized logistic regression to perform the binary classifi-
cation. We use five-fold cross validation to train the logistic
regression classier. We report the ROC AUC as a function
of the number of phenotypes in Fig. 4, from which one can
see HITF outperforms the baseline models significantly over
all the number of phenotypes tested. In addition, as shown
in Fig. 5, HITF compared with Rubik is more robust when
the training set is small. The reason for HITF to outperform
Rubik significantly with small training sets is that Rubik in-
corporates additional orthogonal constraints to enhance the
interpretability, and therefore the capability of representation
could be degraded given insufficient training data.

6 Conclusion
In this paper, we introduced HITF, a novel tensor factoriza-
tion model to jointly learn the diagnosis-medication corre-
spondence and phenotypes from the EHR data without the
interactions among patients, medications and diagnoses be-
ing observed directly. We presented its formulation and the
learning framework. One advantage of HITF compared with
the existing tensor factorization models is that the hidden in-
teractions across dimensions need not to be observed or estab-
lished. Instead, HITF infers the hidden interactions together
with the latent factors, making the resulting factors more ac-
curate and precise.

The experimental results demonstrate that the diagnosis-
medication correspondence learned by HITF is much more
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reasonable and accurate than the equal-correspondence as-
sumption. Moreover, the phenotypes derived by HITF are
clinically meaningful and also more interpretable as they are
sparser and more distinct. Furthermore, the predictive per-
formance of HITF validates the effectiveness of representing
patients using the derived phenotypes. For future research di-
rections, we will focus on generalizing HITF to leverage mul-
tiple data sources available in ICU, such as lab test results, to
discover more clinically significant patterns.

Acknowledgments
This research is partially supported by General Research
Fund 12202117 from the Research Grants Council of Hong
Kong.

References
[Chi and Kolda, 2012] Eric C. Chi and Tamara G. Kolda. On

tensors, sparsity, and nonnegative factorizations. SIAM
Journal on Matrix Analysis and Applications, 33(4):1272–
1299, 2012.

[Gunasekar et al., 2016] Suriya Gunasekar, Joyce C. Ho,
Joydeep Ghosh, Stephanie Kreml, Abel N. Kho, Joshua C
Denny, Bradley A Malin, and Jimeng Sun. Phenotyping
using structured collective matrix factorization of multi–
source EHR data. ArXiv e-prints, September 2016.

[Ho et al., 2014a] Joyce C Ho, Joydeep Ghosh, Steve R
Steinhubl, Walter F Stewart, Joshua C Denny, Bradley A
Malin, and Jimeng Sun. Limestone: High-throughput can-
didate phenotype generation via tensor factorization. Jour-
nal of Biomedical Informatics, 52:199–211, 2014.

[Ho et al., 2014b] Joyce C Ho, Joydeep Ghosh, and Jimeng
Sun. Marble: High-throughput phenotyping from elec-
tronic health records via sparse nonnegative tensor factor-
ization. In Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 115–124. ACM, 2014.

[Hripcsak and Albers, 2013] George Hripcsak and David J
Albers. Next-generation phenotyping of electronic health
records. Journal of the American Medical Informatics As-
sociation, 20(1):117–121, 2013.

[Jensen et al., 2012] Peter B Jensen, Lars J Jensen, and
Søren Brunak. Mining electronic health records: Towards
better research applications and clinical care. Nature Re-
views Genetics, 13(6):395–405, 2012.

[Johnson et al., 2016] Alistair EW Johnson, Tom J Pollard,
Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G Mark. MIMIC-III, a freely ac-
cessible critical care database. Scientific Data, 3, 2016.

[Kim et al., 2017] Yejin Kim, Robert El-Kareh, Jimeng Sun,
Hwanjo Yu, and Xiaoqian Jiang. Discriminative and dis-
tinct phenotyping by constrained tensor factorization. Sci-
entific Reports, 7(1):1114, 2017.

[Kolda and Bader, 2009] Tamara G. Kolda and Brett W.
Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[Lasko et al., 2013] Thomas A. Lasko, Joshua C. Denny, and
Mia A. Levy. Computational phenotype discovery using
unsupervised feature learning over noisy, sparse, and ir-
regular clinical data. PLOS One, 8(6):e66341, 2013.

[Liu et al., 2014] Yuanyuan Liu, Fanhua Shang, Hong
Cheng, James Cheng, and Hanghang Tong. Factor matrix
trace norm minimization for low-rank tensor completion.
In Proceedings of the 2014 SIAM International Confer-
ence on Data Mining, pages 866–874. SIAM, 2014.

[Luo et al., 2016] Yuan Luo, Fei Wang, and Peter Szolovits.
Tensor factorization toward precision medicine. Briefings
in Bioinformatics, 18(3):511–514, 2016.

[Nocedal and Wright, 2006] Jorge Nocedal and Stephen J.
Wright. Numerical Optimization. Springer, New York,
NY, USA, 2nd edition, 2006.

[Ravı̀ et al., 2017] Daniele Ravı̀, Charence Wong, Fani Deli-
gianni, Melissa Berthelot, Javier Andreu-Perez, Benny Lo,
and Guang-Zhong Yang. Deep learning for health infor-
matics. IEEE Journal of Biomedical and Health Informat-
ics, 21(1):4–21, 2017.

[Singh and Gordon, 2008] Ajit P. Singh and Geoffrey J. Gor-
don. Relational learning via collective matrix factoriza-
tion. In Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 650–658. ACM, 2008.

[Wang et al., 2015] Yichen Wang, Robert Chen, Joydeep
Ghosh, Joshua C Denny, Abel Kho, You Chen, Bradley A
Malin, and Jimeng Sun. Rubik: Knowledge guided tensor
factorization and completion for health data analytics. In
Proceedings of the 21st ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages
1265–1274. ACM, 2015.

[Xu and Yin, 2013] Yangyang Xu and Wotao Yin. A block
coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor fac-
torization and completion. SIAM Journal on Imaging Sci-
ences, 6(3):1758–1789, 2013.

[Yamaguchi and Hayashi, 2017] Yuto Yamaguchi and Kohei
Hayashi. Tensor decomposition with missing indices. In
Proceedings of the 26th International Joint Conference
on Artificial Intelligence, pages 3217–3223. AAAI Press,
2017.

[Yang et al., 2017] Kai Yang, Xiang Li, Haifeng Liu, Jing
Mei, Guo Tong Xie, Junfeng Zhao, Bing Xie, and Fei
Wang. TaGiTeD: Predictive task guided tensor decom-
position for representation learning from electronic health
records. In Thirty-First AAAI Conference on Artificial In-
telligence. AAAI, 2017.

[Yu et al., 2015] Sheng Yu, Katherine P Liao, Stanley Y
Shaw, Vivian S Gainer, Susanne E Churchill, Peter
Szolovits, Shawn N Murphy, Isaac S Kohane, and Tianxi
Cai. Toward high-throughput phenotyping: Unbiased au-
tomated feature extraction and selection from knowledge
sources. Journal of the American Medical Informatics As-
sociation, 22(5):993–1000, 2015.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3633


